\(\int \frac {\cos ^2(c+d x) (A+B \sec (c+d x))}{a+a \sec (c+d x)} \, dx\) [88]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 31, antiderivative size = 98 \[ \int \frac {\cos ^2(c+d x) (A+B \sec (c+d x))}{a+a \sec (c+d x)} \, dx=\frac {(3 A-2 B) x}{2 a}-\frac {2 (A-B) \sin (c+d x)}{a d}+\frac {(3 A-2 B) \cos (c+d x) \sin (c+d x)}{2 a d}-\frac {(A-B) \cos (c+d x) \sin (c+d x)}{d (a+a \sec (c+d x))} \]

[Out]

1/2*(3*A-2*B)*x/a-2*(A-B)*sin(d*x+c)/a/d+1/2*(3*A-2*B)*cos(d*x+c)*sin(d*x+c)/a/d-(A-B)*cos(d*x+c)*sin(d*x+c)/d
/(a+a*sec(d*x+c))

Rubi [A] (verified)

Time = 0.18 (sec) , antiderivative size = 98, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.161, Rules used = {4105, 3872, 2715, 8, 2717} \[ \int \frac {\cos ^2(c+d x) (A+B \sec (c+d x))}{a+a \sec (c+d x)} \, dx=-\frac {2 (A-B) \sin (c+d x)}{a d}+\frac {(3 A-2 B) \sin (c+d x) \cos (c+d x)}{2 a d}-\frac {(A-B) \sin (c+d x) \cos (c+d x)}{d (a \sec (c+d x)+a)}+\frac {x (3 A-2 B)}{2 a} \]

[In]

Int[(Cos[c + d*x]^2*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x]),x]

[Out]

((3*A - 2*B)*x)/(2*a) - (2*(A - B)*Sin[c + d*x])/(a*d) + ((3*A - 2*B)*Cos[c + d*x]*Sin[c + d*x])/(2*a*d) - ((A
 - B)*Cos[c + d*x]*Sin[c + d*x])/(d*(a + a*Sec[c + d*x]))

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 2717

Int[sin[Pi/2 + (c_.) + (d_.)*(x_)], x_Symbol] :> Simp[Sin[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 4105

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(-(A*b - a*B))*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(b*f*(
2*m + 1))), x] - Dist[1/(a^2*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[b*B*n - a*A*
(2*m + n + 1) + (A*b - a*B)*(m + n + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[
A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {(A-B) \cos (c+d x) \sin (c+d x)}{d (a+a \sec (c+d x))}+\frac {\int \cos ^2(c+d x) (a (3 A-2 B)-2 a (A-B) \sec (c+d x)) \, dx}{a^2} \\ & = -\frac {(A-B) \cos (c+d x) \sin (c+d x)}{d (a+a \sec (c+d x))}+\frac {(3 A-2 B) \int \cos ^2(c+d x) \, dx}{a}-\frac {(2 (A-B)) \int \cos (c+d x) \, dx}{a} \\ & = -\frac {2 (A-B) \sin (c+d x)}{a d}+\frac {(3 A-2 B) \cos (c+d x) \sin (c+d x)}{2 a d}-\frac {(A-B) \cos (c+d x) \sin (c+d x)}{d (a+a \sec (c+d x))}+\frac {(3 A-2 B) \int 1 \, dx}{2 a} \\ & = \frac {(3 A-2 B) x}{2 a}-\frac {2 (A-B) \sin (c+d x)}{a d}+\frac {(3 A-2 B) \cos (c+d x) \sin (c+d x)}{2 a d}-\frac {(A-B) \cos (c+d x) \sin (c+d x)}{d (a+a \sec (c+d x))} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(197\) vs. \(2(98)=196\).

Time = 1.53 (sec) , antiderivative size = 197, normalized size of antiderivative = 2.01 \[ \int \frac {\cos ^2(c+d x) (A+B \sec (c+d x))}{a+a \sec (c+d x)} \, dx=\frac {\cos \left (\frac {1}{2} (c+d x)\right ) \sec \left (\frac {c}{2}\right ) \left (4 (3 A-2 B) d x \cos \left (\frac {d x}{2}\right )+4 (3 A-2 B) d x \cos \left (c+\frac {d x}{2}\right )-20 A \sin \left (\frac {d x}{2}\right )+20 B \sin \left (\frac {d x}{2}\right )-4 A \sin \left (c+\frac {d x}{2}\right )+4 B \sin \left (c+\frac {d x}{2}\right )-3 A \sin \left (c+\frac {3 d x}{2}\right )+4 B \sin \left (c+\frac {3 d x}{2}\right )-3 A \sin \left (2 c+\frac {3 d x}{2}\right )+4 B \sin \left (2 c+\frac {3 d x}{2}\right )+A \sin \left (2 c+\frac {5 d x}{2}\right )+A \sin \left (3 c+\frac {5 d x}{2}\right )\right )}{8 a d (1+\cos (c+d x))} \]

[In]

Integrate[(Cos[c + d*x]^2*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x]),x]

[Out]

(Cos[(c + d*x)/2]*Sec[c/2]*(4*(3*A - 2*B)*d*x*Cos[(d*x)/2] + 4*(3*A - 2*B)*d*x*Cos[c + (d*x)/2] - 20*A*Sin[(d*
x)/2] + 20*B*Sin[(d*x)/2] - 4*A*Sin[c + (d*x)/2] + 4*B*Sin[c + (d*x)/2] - 3*A*Sin[c + (3*d*x)/2] + 4*B*Sin[c +
 (3*d*x)/2] - 3*A*Sin[2*c + (3*d*x)/2] + 4*B*Sin[2*c + (3*d*x)/2] + A*Sin[2*c + (5*d*x)/2] + A*Sin[3*c + (5*d*
x)/2]))/(8*a*d*(1 + Cos[c + d*x]))

Maple [A] (verified)

Time = 0.89 (sec) , antiderivative size = 61, normalized size of antiderivative = 0.62

method result size
parallelrisch \(\frac {\left (A \cos \left (2 d x +2 c \right )+\left (-2 A +4 B \right ) \cos \left (d x +c \right )-7 A +8 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+6 d \left (A -\frac {2 B}{3}\right ) x}{4 d a}\) \(61\)
derivativedivides \(\frac {-\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) A +\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) B +\frac {2 \left (-\frac {3 A}{2}+B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}+2 \left (-\frac {A}{2}+B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\left (1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{2}}+\left (3 A -2 B \right ) \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}\) \(100\)
default \(\frac {-\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) A +\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) B +\frac {2 \left (-\frac {3 A}{2}+B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}+2 \left (-\frac {A}{2}+B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\left (1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{2}}+\left (3 A -2 B \right ) \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}\) \(100\)
norman \(\frac {\frac {\left (3 A -2 B \right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a}+\frac {\left (3 A -2 B \right ) x}{2 a}-\frac {\left (A -B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{a d}-\frac {\left (2 A -3 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{a d}+\frac {\left (3 A -2 B \right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}}{2 a}-\frac {\left (5 A -4 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{a d}}{\left (1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{2}}\) \(152\)
risch \(\frac {3 A x}{2 a}-\frac {x B}{a}+\frac {i A \,{\mathrm e}^{i \left (d x +c \right )}}{2 a d}-\frac {i {\mathrm e}^{i \left (d x +c \right )} B}{2 a d}-\frac {i A \,{\mathrm e}^{-i \left (d x +c \right )}}{2 a d}+\frac {i {\mathrm e}^{-i \left (d x +c \right )} B}{2 a d}-\frac {2 i A}{d a \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}+\frac {2 i B}{d a \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}+\frac {A \sin \left (2 d x +2 c \right )}{4 a d}\) \(156\)

[In]

int(cos(d*x+c)^2*(A+B*sec(d*x+c))/(a+a*sec(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

1/4*((A*cos(2*d*x+2*c)+(-2*A+4*B)*cos(d*x+c)-7*A+8*B)*tan(1/2*d*x+1/2*c)+6*d*(A-2/3*B)*x)/d/a

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 81, normalized size of antiderivative = 0.83 \[ \int \frac {\cos ^2(c+d x) (A+B \sec (c+d x))}{a+a \sec (c+d x)} \, dx=\frac {{\left (3 \, A - 2 \, B\right )} d x \cos \left (d x + c\right ) + {\left (3 \, A - 2 \, B\right )} d x + {\left (A \cos \left (d x + c\right )^{2} - {\left (A - 2 \, B\right )} \cos \left (d x + c\right ) - 4 \, A + 4 \, B\right )} \sin \left (d x + c\right )}{2 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}} \]

[In]

integrate(cos(d*x+c)^2*(A+B*sec(d*x+c))/(a+a*sec(d*x+c)),x, algorithm="fricas")

[Out]

1/2*((3*A - 2*B)*d*x*cos(d*x + c) + (3*A - 2*B)*d*x + (A*cos(d*x + c)^2 - (A - 2*B)*cos(d*x + c) - 4*A + 4*B)*
sin(d*x + c))/(a*d*cos(d*x + c) + a*d)

Sympy [F]

\[ \int \frac {\cos ^2(c+d x) (A+B \sec (c+d x))}{a+a \sec (c+d x)} \, dx=\frac {\int \frac {A \cos ^{2}{\left (c + d x \right )}}{\sec {\left (c + d x \right )} + 1}\, dx + \int \frac {B \cos ^{2}{\left (c + d x \right )} \sec {\left (c + d x \right )}}{\sec {\left (c + d x \right )} + 1}\, dx}{a} \]

[In]

integrate(cos(d*x+c)**2*(A+B*sec(d*x+c))/(a+a*sec(d*x+c)),x)

[Out]

(Integral(A*cos(c + d*x)**2/(sec(c + d*x) + 1), x) + Integral(B*cos(c + d*x)**2*sec(c + d*x)/(sec(c + d*x) + 1
), x))/a

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 225 vs. \(2 (94) = 188\).

Time = 0.30 (sec) , antiderivative size = 225, normalized size of antiderivative = 2.30 \[ \int \frac {\cos ^2(c+d x) (A+B \sec (c+d x))}{a+a \sec (c+d x)} \, dx=-\frac {A {\left (\frac {\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {3 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}}}{a + \frac {2 \, a \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {a \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}}} - \frac {3 \, \arctan \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a} + \frac {\sin \left (d x + c\right )}{a {\left (\cos \left (d x + c\right ) + 1\right )}}\right )} + B {\left (\frac {2 \, \arctan \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a} - \frac {2 \, \sin \left (d x + c\right )}{{\left (a + \frac {a \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}}\right )} {\left (\cos \left (d x + c\right ) + 1\right )}} - \frac {\sin \left (d x + c\right )}{a {\left (\cos \left (d x + c\right ) + 1\right )}}\right )}}{d} \]

[In]

integrate(cos(d*x+c)^2*(A+B*sec(d*x+c))/(a+a*sec(d*x+c)),x, algorithm="maxima")

[Out]

-(A*((sin(d*x + c)/(cos(d*x + c) + 1) + 3*sin(d*x + c)^3/(cos(d*x + c) + 1)^3)/(a + 2*a*sin(d*x + c)^2/(cos(d*
x + c) + 1)^2 + a*sin(d*x + c)^4/(cos(d*x + c) + 1)^4) - 3*arctan(sin(d*x + c)/(cos(d*x + c) + 1))/a + sin(d*x
 + c)/(a*(cos(d*x + c) + 1))) + B*(2*arctan(sin(d*x + c)/(cos(d*x + c) + 1))/a - 2*sin(d*x + c)/((a + a*sin(d*
x + c)^2/(cos(d*x + c) + 1)^2)*(cos(d*x + c) + 1)) - sin(d*x + c)/(a*(cos(d*x + c) + 1))))/d

Giac [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 123, normalized size of antiderivative = 1.26 \[ \int \frac {\cos ^2(c+d x) (A+B \sec (c+d x))}{a+a \sec (c+d x)} \, dx=\frac {\frac {{\left (d x + c\right )} {\left (3 \, A - 2 \, B\right )}}{a} - \frac {2 \, {\left (A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{a} - \frac {2 \, {\left (3 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 2 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 2 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )}^{2} a}}{2 \, d} \]

[In]

integrate(cos(d*x+c)^2*(A+B*sec(d*x+c))/(a+a*sec(d*x+c)),x, algorithm="giac")

[Out]

1/2*((d*x + c)*(3*A - 2*B)/a - 2*(A*tan(1/2*d*x + 1/2*c) - B*tan(1/2*d*x + 1/2*c))/a - 2*(3*A*tan(1/2*d*x + 1/
2*c)^3 - 2*B*tan(1/2*d*x + 1/2*c)^3 + A*tan(1/2*d*x + 1/2*c) - 2*B*tan(1/2*d*x + 1/2*c))/((tan(1/2*d*x + 1/2*c
)^2 + 1)^2*a))/d

Mupad [B] (verification not implemented)

Time = 13.86 (sec) , antiderivative size = 107, normalized size of antiderivative = 1.09 \[ \int \frac {\cos ^2(c+d x) (A+B \sec (c+d x))}{a+a \sec (c+d x)} \, dx=\frac {x\,\left (3\,A-2\,B\right )}{2\,a}-\frac {\left (3\,A-2\,B\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+\left (A-2\,B\right )\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{d\,\left (a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+2\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+a\right )}-\frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (A-B\right )}{a\,d} \]

[In]

int((cos(c + d*x)^2*(A + B/cos(c + d*x)))/(a + a/cos(c + d*x)),x)

[Out]

(x*(3*A - 2*B))/(2*a) - (tan(c/2 + (d*x)/2)^3*(3*A - 2*B) + tan(c/2 + (d*x)/2)*(A - 2*B))/(d*(a + 2*a*tan(c/2
+ (d*x)/2)^2 + a*tan(c/2 + (d*x)/2)^4)) - (tan(c/2 + (d*x)/2)*(A - B))/(a*d)